

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Spectrum of Crystalline Pyrimidine

R. Foglizzo^{ab}; A. Novak^{ab}

^a Laboratoire de Chimie Physique du C. N. R. S., Thiais ^b Laboratoire de Spectrochimie Moléculaire Faculté des Sciences, Paris, France

To cite this Article Foglizzo, R. and Novak, A.(1969) 'Raman Spectrum of Crystalline Pyrimidine', *Spectroscopy Letters*, 2: 6, 165 — 171

To link to this Article: DOI: 10.1080/00387016908050036

URL: <http://dx.doi.org/10.1080/00387016908050036>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN SPECTRUM OF CRYSTALLINE PYRIMIDINE

R. Foglizzo and A. Novak
Laboratoire de Chimie Physique du C. N. R. S.
2, rue Henry Dunant, 94, Thiais
and Laboratoire de Spectrochimie Moléculaire
Faculté des Sciences, Paris, France

In an earlier work ¹ we have investigated an oriented crystal of pyrimidine at liquid nitrogen temperature using polarized infrared radiation. The static field effect for an A_2 mode (16a) and correlation field splitting for fourteen fundamentals have been observed ¹. This paper reports the Raman spectrum of crystalline pyrimidine at liquid nitrogen temperature.

The pyrimidine molecule has C_{2v} symmetry. The crystal space group is $Pna2_1(C_{2v}^9)$ with four molecules in the unit cell ². There are thus 96 internal vibrations, $24A_1 + 24A_2 + 24B_1 + 24B_2$, and since there is no site symmetry for pyrimidine molecules, we expect each intramolecular mode to be split into four components three of them infrared active and all four Raman active. The external modes, on the other hand, can be represented by $5A_1 + 6A_2 + 5B_1 + 5B_2$, fifteen infrared and twenty one Raman active.

EXPERIMENTAL

The commercial sample purified by repeated sublimations before use was vaporized and the vapors condensed on a cold metal surface oriented at 45° to the incident laser beam. The operation was carried out in vacuum using a Coderg Cryocirc cryostat. The Raman spectra of polycrystalline

pyrimidine were examined at 153° and 90°K. Spectral slitwidths of 1 cm^{-1} were used for strong bands and $2, 4, \text{ and } 8\text{ cm}^{-1}$ for weaker bands. The positions of the bands are probably good to $\pm 1\text{ cm}^{-1}$. The intensities were not corrected. The instrument in this study was a Coderg Raman Model PH1 spectrograph equipped with a double monochromator. The sample was excited by the 6328 \AA° line of a Spectra-Physics Model 125 He-Ne laser.

RESULTS AND DISCUSSION

The Raman spectrum of crystalline pyrimidine, at 90°K, 3100-3000, 1600-300, and 120-35 cm^{-1} regions, is shown in Fig. 1. The spectrum recorded at 153°K is similar, however, practically no splitting of the fundamentals has been observed at that temperature. The Raman frequencies are compared to the infrared ones in Tables 1 and 2. Intensities of the Raman lines are in arbitrary units with respect to the strongest 994 cm^{-1} line to which the intensity of 100 is given.

Intramolecular Vibrations

The splitting of the bands does not appear to be due exclusively to the correlation field of the crystal and is occasionally caused by combinations and overtones, particularly in the region above 1000 cm^{-1} . The intensity of the combination bands may sometimes be enhanced by Fermi resonance which complicates the interpretation of the spectrum. In the following, the 3100-3000, 1600-1300, 1300-900, and 900-200 cm^{-1} spectral regions will be discussed successively, in order to check the conclusions drawn from our infrared data¹. The assignment of the intramolecular fundamentals is given in terms of C_{2v} symmetry of an isolated molecule following the notation of Lord et al.³.

In the 3100-3000 cm^{-1} region, where four CH stretching fundamentals are expected, eight Raman and infrared bands are observed at similar frequencies. No measurable correlation splitting of the νCH fundamentals could be shown by infrared dichroism measurements¹. There are thus four

RAMAN SPECTRUM OF CRYSTALLINE PYRIMIDINE

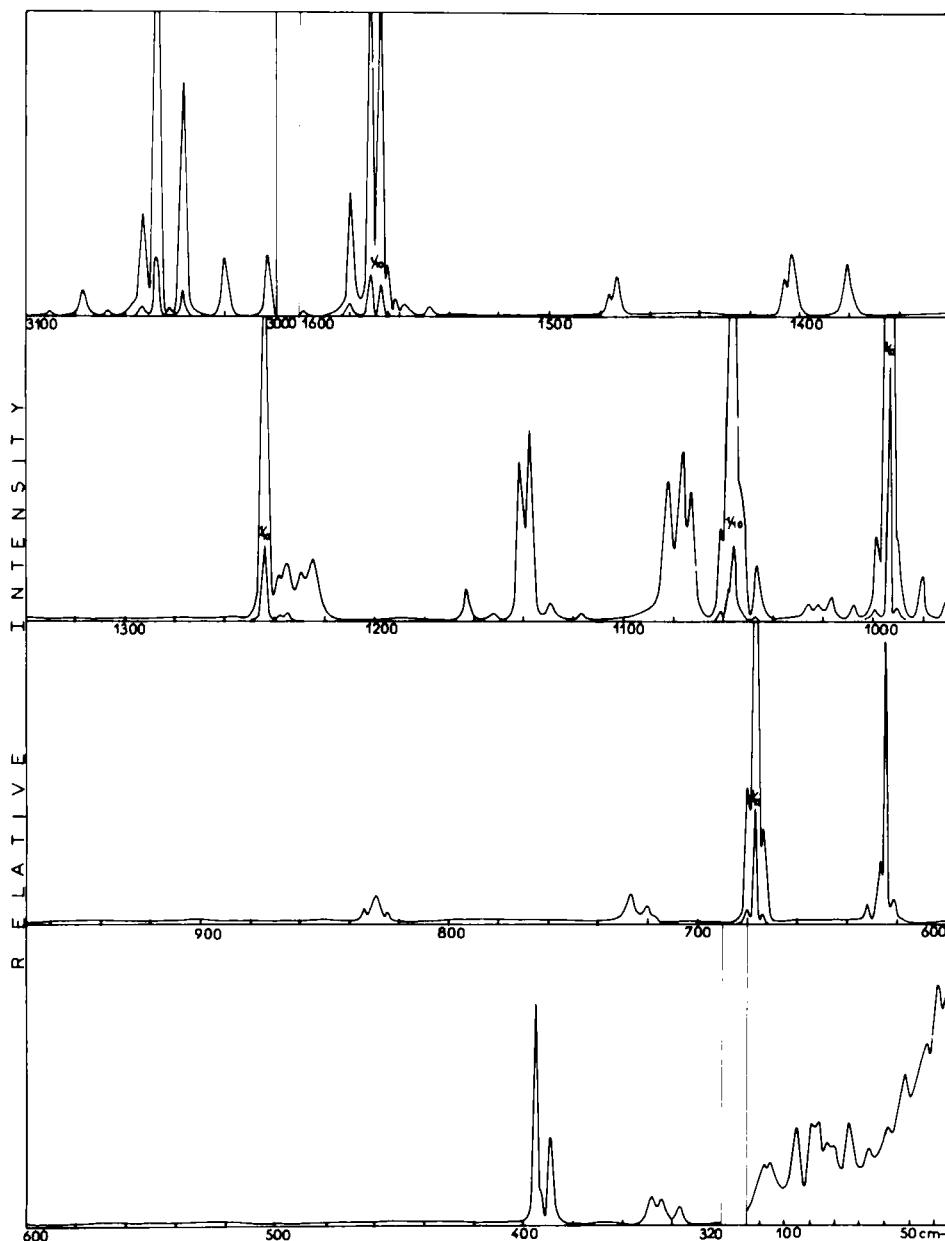


Figure 1

Raman spectra of Crystalline Pyrimidine at 90°K

TABLE 1

Infrared and Raman frequencies of Crystalline Pyrimidine at 90°K

IR	Raman	Assignment	IR	Raman	Assignment
3090 w	3092 (0)	comb	1086 m	1082 (6)	
3077 m	3079 (1)	7b (B ₁)	1080 m	1076 (7)	
3069 sh	3069 (0)	comb	1075 w	1073 (5)	
3055 w	3055 (4)	comb		1066 sh	
3049 m	3050 (22)	2 (A ₁)		1056 (29)	
3039 w	3039 (9)	20a (A ₁)	1060 w	1054 sh	12 (A ₁)
3022 w	3022 (2)	comb		1047 (2)	
3004 m	3005 (2)	13 (A ₁)			
1577 vs	1581 (5)		1027 sh	1026 (1)	
1570 vs	1573 (17)	8a (A ₁)	1024 w	1022 (1)	18b (B ₁)
1568 vs	1569 (13)		1018 vw	1017 (1)	
1563 m	1566 (2)	8b (B ₁)		1008 (1)	comb
1558 sh	1559 (0)	comb	992 ms	994 (100)	1 (A ₁)
1550 m	1549 (0)		989 ms	991 (3)	
1479 m			999 m	999 (3)	
1475 m	1477 (1)		980 m	981 (2)	5 (B ₂)
1473 sh	1474 (2)	19b (B ₁)	970 w	971 (1)	
1463 m				834 (1/2)	
1402 vs	1407 (2)	19a (A ₁)	835 s	829 (1)	10b (B ₂)
1398 sh	1404 (3)		825 s	825 (1/2)	
1392 m			726 vs	727 (1)	
1382 m	1382 (2)		720 vs	720 (1/2)	11 (B ₂)
1380 m		14 (B ₁)	717 sh	717 sh	4 (B ₂)
1372 sh			679 m	680 (5)	
	1244 (28)		673 m	677 (16)	6a (A ₁)
1238 m	1238 sh		668 w	674 (4)	
1233 w	1235 (2)	3 (B ₁)	631 s	632 (1)	
	1229 sh		628 s	627 (3)	
1224 sh	1225 (2)		625 sh	621 (11)	6b (B ₁)
1162 m	1163 (1)	15 (B ₁)	621 m	622 (1)	
1155 w	1153 (0)	comb	396 w	395 (9)	
1143 m			394 w	393 sh	16a (A ₂)
1141 m	1142 (7)	9a (A ₁)	390 w	389 (3)	
1138 m	1138 (6)			348 (1)	
1136 sh	1129 (1)	comb	342 m	344 (1)	16b (B ₂)
1126 vw				337 (1)	
1113 vw	1117 (0)				

RAMAN SPECTRUM OF CRYSTALLINE PYRIMIDINE

νCH and four combination bands in this region. The identification of the νCH frequencies at 3050, 3079 and 3005 cm^{-1} appears straightforward, the first being very strong in Raman and the others relatively strong in infrared. The fourth νCH fundamental can be either of the intense 3039 and 3055 cm^{-1} Raman lines, which implies that one of them is probably a combination band in Fermi resonance with the 3050 cm^{-1} fundamental.

There are five predominantly skeletal vibrations between 1600 and 1300 cm^{-1} . The assignment of two doublets, 1581, 1573 and 1569, 1566 cm^{-1} , to the ν8a and ν8b fundamentals, respectively, is consistent with the infrared dichroism and Raman intensities. The 1559 and 1549 cm^{-1} bands, very weak in the Raman spectrum, must be due to combinations. Doublets are also observed for the ν19a and ν19b modes. The assignment of the ν14 fundamental¹ to an infrared 1382 , 1380 cm^{-1} doublet is supported by the 1382 cm^{-1} Raman band ; the interpretation of Lord et al.³ appears thus preferable to that of Califano et al.⁴.

1200-900 cm^{-1} region. Five Raman peaks are observed between 1250 and 1220 cm^{-1} where the ν3 vibration is expected. The 1244 and 1238 cm^{-1} frequencies are very likely to be fundamental, appearing as strong bands in Raman and infrared respectively. Among the remaining three components, at least one has to be considered as a combination. The ν15 mode gives a singlet at 1162 cm^{-1} whereas a strong doublet, 1142 , 1138 cm^{-1} , is observed for the ν9a vibration. Two groups of strong Raman bands near 1076 and 1056 cm^{-1} pose a problem. If the interpretation proposed by Lord et al.³ for the 1053 - 1074 cm^{-1} Raman doublet of the liquid pyrimidine as due to Fermi resonance of the ν12 fundamental with the $\nu\text{16b} + \nu\text{11}$ combination is extended to the crystal, it must be assumed that each of the three components at 1082 , 1076 and 1073 cm^{-1} undergoes a similar effect. A relatively weak Raman triplet, 1026 , 1022 and 1017 cm^{-1} , has its infrared counterpart and is assigned to the ν18b mode. In the 1000-970 cm^{-1} range, five Raman bands at 999, 994, 991, 981 and 971 cm^{-1} belong to the

$\nu_1(A_1)$ and $\nu_5(B_2)$ vibrations. Combined results of the infrared dichroism¹ and Raman intensities, permit one to assign the 994 and 991 cm^{-1} components to the ν_1 and those at 999, 981 and 971 cm^{-1} to the ν_5 modes.

900-200 cm^{-1} region. Triplets are observed for ν_{10b} , ν_6a , ν_{16a} , and ν_{16b} and a quartet for the ν_6b vibrations. In each case, the splitting is believed to be due the correlation effect of the crystal. The triplet 727, 720 and 717 cm^{-1} , on the other hand, could be due to both ν_{11} and ν_4 vibrations of the B_2 species. The assignment of very strong Raman lines near 677 and 621 cm^{-1} to ν_6a and ν_6b modes respectively agrees with that of Califano et al.⁴ and disagrees with that of Lord et al.³ who reported a Raman band near 567 cm^{-1} , assigned to the ν_6a fundamental of the liquid pyrimidine; we could not observe any band in the 600-400 cm^{-1} region of the Raman and infrared spectra of the crystal. The 870 cm^{-1} Raman band assigned to the ν_{17a} vibration (A_2) of the liquid³ does not appear either in the crystal spectra.

Twenty two intramolecular fundamentals have thus been observed in the Raman spectrum of pyrimidine crystal. One of the remaining two, the ν_{17a} mode, has not been identified and the second (ν_4) cannot be distinguished from ν_{11} or vice-versa. Four components, which may be due to the crystal effect, show up for ν_6b , ν_{12} and ν_3 modes, whereas νCH and ν_{15} vibrations give singlets. The other fundamentals appear as doublets or triplets.

Lattice Vibrations

There are 12 rotational and 9 translational vibrations of pyrimidine crystal expected to be Raman active. In the observed spectrum of this compound at 90°K, 13 bands are found in the 120-35 cm^{-1} range (Fig. 1, Table 2) and all are due to lattice modes since the lowest intramolecular frequency is identified at 337 cm^{-1} . Thus, the Raman spectrum appears much richer than the infrared

RAMAN SPECTRUM OF CRYSTALLINE PYRIMIDINE

spectrum, since, for the latter only three absorption bands have been observed (Table 2). The lattice frequencies occur in the same spectral region as those of pyrazine⁵ but no assignment has been attempted for the present.

TABLE 2

Raman and Infrared frequencies of lattice vibrations of crystalline pyrimidine

Raman (153°K)	106 m	95 s	86 s	72 s	65 w	56 sh	42 sh
	103 sh		80 sh			51 m	39 s
Raman (90°K)			89 s				
	108 m	95 s	86 s	74 s	66 w	58 sh	43 m
	106 m		83 m			52 m	39 s
			80 sh				
Infrared (90°K)	106 m	97 m		72 m			

REFERENCES

1. R. Foglizzo and A. Novak, *J. Chim. Phys.*, 64, 1484 (1967)
2. P. J. Wheatley, *Acta Cryst.*, 13, 80 (1960)
3. R. C. Lord, A. L. Marston, and F. A. Miller, *Spectrochim. Acta*, 9, 113 (1957)
4. G. Sbrana, G. Adembri, and S. Califano, *Spectrochim. Acta*, 22, 1831 (1966)
5. M. Ito and T. Shigoeka, *J. Chem. Phys.*, 44, 1001 (1966)

Received June 30, 1969